A comparison of emulation methods for Approximate Bayesian Computation
نویسندگان
چکیده
Approximate Bayesian Computation (ABC) is a family of statistical inference techniques, which is increasingly used in biology and other scientific fields. Its main benefit is to be applicable to models for which the computation of the model likelihood is intractable. The basic idea of ABC is to empirically approximate the model likelihood by using intensive realizations of model runs. Due to computing time limitations, ABC has thus been mainly applied to models that are relatively quick to simulate. We here aim at briefly introducing the field of statistical emulation of computer code outputs and to demonstrate its potential for ABC applications. Emulation consists in replacing the costly to simulate model by another (quick to simulate) statistical model called emulator or metamodel. This emulator is fitted to a small number of outputs of the original model, and is subsequently used as a surrogate during the inference procedure. In this contribution, we first detail the principles of model emulation, with a special reference to the ABC context in which the description of the stochasticity of model realizations is as important as the description of the trends linking model parameters and outputs. We then compare several emulation strategies in an ABC context, using as case study a stochastic ecological model of community dynamics. We finally describe a novel emulation-based sequential ABC algorithm which is shown to decrease computing time by a factor of two on the studied example, compared to previous sequential ABC algorithms. Routines to perform emulation-based ABC were made available within the R package EasyABC.
منابع مشابه
ABrox—A user-friendly Python module for approximate Bayesian computation with a focus on model comparison
We give an overview of the basic principles of approximate Bayesian computation (ABC), a class of stochastic methods that enable flexible and likelihood-free model comparison and parameter estimation. Our new open-source software called ABrox is used to illustrate ABC for model comparison on two prominent statistical tests, the two-sample t-test and the Levene-Test. We further highlight the fle...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملPartial Copyright Licence iii
The purpose of this thesis is to develop Bayesian methodology together with the proper computational tools to address two different problems. The first problem which is more general from a methodological point of view appears in computer experiments. We consider emulation of realizations of a monotone function at a finite set of inputs available from a computationally intensive simulator. We de...
متن کاملRandom gravitational emulation search algorithm (RGES (in scheduling traveling salesman problem
this article proposes a new algorithm for finding a good approximate set of non-dominated solutions for solving generalized traveling salesman problem. Random gravitational emulation search algorithm (RGES (is presented for solving traveling salesman problem. The algorithm based on random search concepts, and uses two parameters, speed and force of gravity in physics. The proposed algorithm is ...
متن کاملA Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation
Approximate Bayesian computation (ABC) methods make use of comparisons between simulated and observed summary statistics to overcome the problem of computationally intractable likelihood functions. As the practical implementation of ABC requires computations based on vectors of summary statistics, rather than full data sets, a central question is how to derive low-dimensional summary statistics...
متن کامل